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Abstract The 1-f model has been proposed to describe the physics of copper oxide planes 
in high-temperature superconductors. A d-space quantum renormalization-group method is 
developed in order to study the 1-3 Hamiltonian in a square lauice. The zero-temperature phase 
diagram is aiialysed for electron concentrations near the half-filled band and ratio J j r .  A critical 
line is found Ihai separates two distinct regions: one of a gas of holes in an anrifenomagnetic 
backgIound. and the other consisting of a phase in which holes segregate into a hole-rich and 
a pure antiferromagnetic regioh as demonstrated by chemical-potential eigenvalue calculations 
near the phase aluactor. The results are close lo the experimental observations. 

1. Introduction 

High-temperature superconductors (HTSC) a ~ e  the object of intense current research. There 
is substantial experimental evidence that the conducting carriers have wavefunctions mainly 
in the CuO2 plane and. therefore, a single plane may be independently studied. Another 
important observation is that the parent compounds, such as LaZCuO4 and YBa2Cu306, are 
antiferromagnetic insulators with the copper sites in a 3d9 configuration (Cu2+) [I]. When 
electrons or holes are introduced into the CuO planes by doping, the antiferromagnetic 
long-range order is gradually destroyed, and eventually a superconducting state becomes 
observable at a critical doping value. n e  exact manner in which these processes come 
about is of central importance to understand the physics of HTSC. It has been suggested 
earlier [Z] that the simplest model to deal with this problem is the 2D single-band Hubbard 
model, i.e. a model that includes only one orbital per CuOz unit. More iecently, the t-J 
model [3] has also been proposed in order to explain how the magnetic order gives way 
to superconductivity. This model may be derived either as the suong-coupling ( U / t  >> I )  
limit [4] of the Hubbard model or directly from a Cu-0 two-band Hamiltonian [2,3]. 

It is a general belief that the Hubbard and the t-J Hamiltonians are the most basic 
models that may be used to describe the strongly correlated electrons in the CuO planeS. 
Therefore, it is worthwhile to determine first their general properties, before the introduction 
of more sophisticated models. However, both models with parameter spaces relevant to HTSC 
are difficult to treat and there are no exact solutions in U). Consequently many different 
techniques have been used, such as variational Monte Carlo, quantum Monte Carlo, slave 
bosons, exact diagonalization methods and several others [5]. The strategy adopted in many 
of these works is to concentrate on the low-energy and low-temperature properties. 

In this paper we study the zero-temperature phase diagram for the ZD t-J model 
by means of a real-space quantum renormalization-group (QRG) methcd. This is a non- 
perturbative method that requires a truncation of the Hilbert space, which leads to an 
uncontrolled approximation. However, the block renormalization-group approach has been 
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extremely successful and widely used in the study of critical phenomena and the transitions 
that take place in the ground-state and lower excited-states subspace [6]. Section 2 is 
very technical and the method is developed by parts, studying limiting situations separately 
and finishes with the discussion of the I-J model at doping concentration ne? the half- 
filled band, i.e. the electron density per site n Q 1. In section 3 we investigate the phase 
separation line for the case of isotropic and anisotropic (Ising) spin-spin coupling. The 
phase separation problem for the 1-J model has attracted considerable attention recently 
and, consequently, has been studied by different methods with conflicting results [7-91. 
Therefore it is a problem not settled yet and it provided the motivation to perform a real- 
space QRG calculation to study the critical behaviour of the t-J Hamiltonian. We present our 
results in section 3 and compare with previous calculations and experimental measurements 
in HTSC systems. Our conclusions are summarized in section 4. 
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2. The method 

The I-J Hamiltonian is described by a lattice Hamiltonian of localized electrons of spin 
one-half with antiferromagnetic (AF) Heisenberg exchange interaction ( J )  between nearest- 
neighbour spins. Upon doping, electrons are removed, leaving behind a 'hole' or missing 
spin, which can move through the plane because nearest-neighbour electrons can hop into 
its place with probability amplitude f. The t-J Hamiltonian may be written as 

where C:o and C;,< are creation and annihilation operators for an electron of spin U at site 
i, with the constraint of no doubled occupancy, ni = CcCi is  the occupation number, r is 
the hopping amplitude, J the AF exchange interaction ( J  0) and W = J ( l  - A) with 
0 < A < 1. The chemical potential f i  controls the concentration of electrons; p = +CO at 
half-filling (i.e. ni n 1) and /I = -CO for zero electron density. 

In order to explain our procedure, we perform our calculation through the following 
steps: we begin with the study of the antiferromagnetic Heisenberg system, since it is easier 
to find proper transformation cells in the pure system. Then we derive how the hopping 
amplitude is scaled for a single hole motion in these cells. Thirdly, we study the diluted 
AF magnet without hopping to find how the dilution modifies the recurrence relation for the 
exchange coupling. Finally we introduce the hopping in the diluted AF magnet and argue 
that this case corresponds to an annealed magnet at T =- 0 K. After the analysis of these 
separate cases, we obtain the recurrence relations for the parameters of the r-J Hamiltonian 
for densities equal to and below the half-filled band. 

2.1. The pure (andoped) anti$erromgnet 

In the limiting situation n = 1, there is one electron per site and the system is clearly 
govemed by the A F  spinapin exchange coupling. 

The QRG transformation in ZD is performed in two steps: let us first divide the square 
lattice of side 4 into cells of three sites in a row, and the whole crystal Hamiltonian into an 
intracell part Ho and an intercell interaction V. Since we are interested in the low-energy 
properties, we will consider only the (closed) subspace of the (total spin 1/2) states 1 + -+), 
I + +-) and I - ++). 
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Following a general approach [6], we diagonalize exactly the three-site intracell 
Hamiltonian; we keep the lowest eigenvalue E!' and its corresponding eigenvector 
(at, a*, 03). Thus the new renormalized states are defined as 

In figure l (a)  we show schematically how this first part of the transformation is done. 
To obtain the new coupling constant J', we write the intercell interactions among the spins 
of the two cells of figure l(a). The three interactions are assumed to equal the interaction 
between two renormalid spins ( i  and j ) .  In the case of up spins we obtain 

01 

J' = [3af + 3ai + 3a: - 2a;a: - 2n:(ui + 4)] J (3d 

or 

J ' =  F ( J ) J .  (3b) 

For the isotropic case, W = J :  a1 = -2/& and a2 = U )  = l /& which yields 
F ( J )  = 1. If W = 0, the king limit: 01 = 1 and nz = a) = 0; and we find F ( J )  = 3. 

Figure 1. ( U )  The basic cell has lhree sites in a mw. Ibo such cells are used Lo calculafe J' 
and f ' .  (b) The complete RG transformation. We sm with a square lattice of parsmeter a and. 
aftathe mfoimation. we are left with a square lattice of parameter 3a. JH and M are equal 
to J and f for the undoped system. 
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Next, as the second step (figure l(b)), we extend the RG transformation to the whole 
lattice: we repeat the same procedure with a n/2 rotation, as illustrated in figure l(b). 
This transformation is very similar to that proposed for the Hubbard model [IO]. For the 
undoped system with n = 1, JH = J ,  and after this second transformation, we obtain the 
final recurrence relation 

J" = F ( F ( J ) ) J .  (4) 

Thus the complete QRG transformation shown in figure l(b) yields J" = J (J" = 35) 
for the AF pure Heisenberg (king) system. These results constitute a fust test for our 
real-space QRG procedure because the lower critical dimension for the Heisenberg (king) 
antiferromagnet in a square lattice is d, = 2 (I). At the marginal dimension and at zero 
temperature, J should not change under iteration and we can expect that F ( J )  is equal 
to b"-&), where d = 2 is the dimension and b = 3 the scaling factor. After the second 
QRG step, we me left with another square lattice with a lattice parameter equal to 3a. The 
method preserves the ground state of the whole lattice when infinite cells are used. For our 
specific transformation cell, we find that the new renormalized sites have a constant energy 
value G = E"). For the 2D isotropic AF Heisenberg, the two steps shown schematically 
in figure l(b) yield G") = -45 - 45' = -83, since J' = J according to equation (3b). 
Following a well known method [IO], the ground energy per spin is 

From the above discussion, J"]  = J and our cell has the scaling factor b = 3 (see 
figure I(b)). Thus 

E ~ s = ( - 8 3 / 9 ) [ 1 +  1 / 9 + ( l / 9 ) 2 + . . . ] = - J .  (56) 

This result is 33% higher than the results of several methods as reviewed by Manousakk 
[ 11 1. The same ground-state energy discrepancy for the king model with a transverse field is 
reported in [6] ,  but, on the other hand, the QRG method gave a good quantitative description 
of its critical parameters. In fact this method always yields an upper bound to the exact 
ground state owing to the truncation of the original Hilbert space. Therefore, such high 
ground-state energy is a consequence of the method, nevertheless, we expect that our QRG 
calculation gives a good qualitative description and an accurate phase diagram of the f - J  
model. 

2.2. The recurrence relation for a single hole 

In order to deal with the hole motion and to derive the QRG recurrence relation for one 
single hole on an AF background, we consider the following low-energy cell states (with 
s = 0): 

These are the two lowest-energy states with one hole in a three-site cell and vanishing total 
spin. As before, we find the eigenvalues, keep the lowest one E!' and its corresponding 
eigenvector (bi, bz) to define a renormalized hole state IO') = bill,  0) + bzl2,O). The 
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new cell operators are defmed by the relations C$'\(Y) = I+') and C?'lO') = I-'). The 
renormalized hopping amplitude is worked out in the same manner as J'. As shown 
schematically in figure l(u), we calculate a matrix element, e.g. ,(O'li( +' lt'[CECj+ + 
HC]I(Y)il+')j, with the intercell hopping term of the corresponding cells; this procedure 
yields 

t' = hZ(J, t ) t  (7) 

with 

We thus obtained the first part of the QRG for the hopping amplitude. 
We again adopt the standard procedure [IO] and define the renormalized chemical 

potential as the energy difference of the renormalized s t ab .  In general, there will be 
states with two or three holes that also become IO') and states with one hole (like I + O f )  
that also become I+')). The average particle number for the I+') state is 2.5 and 1.5 for 
the ICY) state. Thus the average chemical potential is 

Furthermore, we take C' = E!) and the renormalized Hamiltonian has precisely the 
same form as the original one. 

As a further test for our RG procedure, we applied the method to a ZD Hubbard model. 
We used the three-site cell states and energies of [lo]. By similar arguments that led to the 
chemical potential, we obtain U' = 2E* - 2p + E', where E* is the energy of the doubly 
occupied site. The hopping term, calculated by the above method, is twice the ID hopping 
of [IO] plus an additional term due to the hopping at the central site. After the two steps 
of figures l (u)  and (b), we obtain a non-trivial fixed point at (U/& = 4.98. The detailed 
calculation, with critical exponent analysis, will be presented elsewhere. Such a value for 
the Mott transition compares better with the analytical calculations [ 121 than the value of 
3.72 presented in [ 101. 

2.3. The doped sysfem wirh t = 0 

We discuss now the doped system, which is an AF with vacant sites. The precise number 
of holes in the plane is dictated by the value of the chemical potential p. Let us consider 
now the situation without the hopping term. This case corresponds to a quenched site 
diluted antifemmagnet with sites occupied either by electrons with probability p or by 
holes with probability 1 - p. Clearly this probability depends on the degree of doping. 
Quenched site dilution is the case in which the configurational averages are independent 
of thermal averages and given by a separate site probability [13]. Since the original sites 
are occupied with probability p ,  then the renormalized cells may be defined to be occupied 
with probability p', and p' = R ( p ) .  The function R ( p )  depends only on the geometry 
of the chosen cell. In a general treatment using a majority rule, the states with two and 
three occupied sites with same z-component spin (like 10 + +), I + O+),  . . .) become the 
renormalized sites I*'). However, in order to use the results of the previous sections, we 
keep those with opposite spins (like 10 + -), I f 0-), . . .) to become Il'). By the same 
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token, the states with two or three vacant sites should also become ICY). Based on these 
considerations, we can write the following general probability equations: 

p' = p' + 3p2(1 - p)/2 (104 

(lob) 

Such equations do not have a finite fixed point and any finite concentration p flows to 
p = 0. The recurrence relation for the exchange coupling has to be modified to include 
the above dilution probability. nterefore we multiply both sides of equation (36) by their 
respective site probability: 

I - p'= 3pz(1 -p)/2+ 3(1 - p ) ' p + ( l -  P ) ~ .  

pnJ'= p6F(J)J/4. (11) 

The pa comes from the two renormalized sites and the p6/4 from the six sites of the 
two cells (figure ](a)). This is the major correction near the half-filling where p 2 1. The 
factor of 4 is because only lowenergy states that have total spin equal to 1/2, which are 
half of the total states, are considered in the calculations that led to equation (3b). 

2.4. The doped sysrem with hopping 

Let us now consider the system described by the complete t-J Hamiltonian of equation (1). 
The motion of the electrons and holes introduces new features into the system: depending 
on whether it is more energetically favourable, the holes may either form a uniform-density 
phase through the whole plane or they may aggregate into two phases of different densities. 
These two possibilities are due to competition between the exchange coupling, which favours 
as many magnetic bonds as possible, and the hopping term, which favours the motion and, 
consequently, the separation of the spins. It is as if the hopping term plays the role of 
temperature in a dilute Heisenberg magnet at T = 0 K. When r # 0 (for J # 0) the system 
can phase-separate into hole-rich and electron-rich phases, exactly like the aggregation 
of a site diluted annealed magnetic system at low temperature. As the temperature is 
raised in an annealed magnet, several bonds are broken and and energetically unfavourable 
configurations may occur. On the other hand, this is the expected behaviour for a diluted 
magnet if the hopping amplitude r becomes of the order of J even at zero temperature. 

In  order to take these features into account, we introduce a zero-temperature 'annealed' 
site disorder, defined by an average over the two lowest-energy states for each cell: 

01 

(p) e-p'/l/(e-&'/' + 1) (12b) 

where the exponents are divided by the hopping amplitude, r ,  just in order to be adimensional 
functions. 

We want to generalize the QRG equations (4) and (7) for J' and t' derived for half-filling 
(n N 1) in order to take the above mobile dilution into account. It is a strategy similar 
to what we did in equation (1 1): we take the probability of a renormalized electron I+') 
or I-') as (p') and (p3)/2 for the probability of the cell states used to calculate them. 
Similarly the probability of a renormalized hole ICY) is (1 - ( p ' ) )  and the cell states used to 
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calculate t‘ are (p’)  x 3 ( p ) ( l -  (p))’ .  These probability weights provide a way to introduce 
the ‘annealed‘ site disorder to our previous QRG equations. Thus the general QRG equations 
appropriate to the f - J  Hamiltonian a ~ e  

(p’)’J’ = ( P ) ~ F ( J ) J / ~  ( 13d 

and 

(P’W - (p’Uf’ = 3 ( p ) ( l  - ( P ) ) ~ ( P ) ~ A ’ ( J .  O f .  

In order to obtain the complete recurrence relation, we note that JH and t H  (see definition 
of JH and t H  in figure I@))  are rescaled after the first step and become 

(P’)’JL = ( P ) ~ J H / ~  (140) 

and 

(d)U - (p‘))th = 3(p)(l - ( P ) ) ~ ( P ) ’ ~ H .  (14b) 

We now perform the second step (figure I(b)) and get the final QRG recurrence relation, 
which may be written as 

and 

- (p‘) J’ - ( p ” ) J “  
(1 - (p”))t” 12(1 - (p’))%‘ 

where we used Az(J‘,  t? = Az(J,  t )  in equation (15b), which is strictly true near the fixed 
points and therefore gives correct phase boundaries. Furthermore A2(J,  t )  is a slowly varying 
function of J l t .  On the other hand, we may rewrite equation (126) as 

Therefore we amve at complete QRG recurrence relations that recover the whole lattice 
and are dependent on the value of p .  i.e. the electron concentration. In the large p limit, n 
or p = 1 and we recover the results of the undiluted magnet (section 2.2). 

3. Results 

We present now the results of our QRG treatment. We consider the sihiation of isotropic 
spin coupling (Heisenberg model) and, just in order to gain insight on any out-of-plane 
interaction, the situation of anisotropic coupling (king model), the so-called t-J model [7]. 

For a given value of electron probability p (or electron density n), we analyse the 
recursion relation for J / t .  In general we find an unstable (critical) fixed point ( J / t ) c  and 
two trivial fixed points at J l t  = 0 and J / t  = +CO. The value of the ked point depends on 
the initial choice of electron probability p (or density n )  and gives the phase boundary of 
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the zero-temperature t-J model phase diagram. For J / t  > ( J / &  the RG iteration flow is 
towards the large J / t  limit. For J / t  below the critical value the flow is towards J / t  = 0, 
which corresponds to a single uniform-density phase, with large kinetic energy holes. 

We can demonstrate the phase separation by studying the recursion relation of 
equation (9) for the chemical potential in the king limit, which is 

E V L de Mello 

p' = Z[p + 25 - [ J  + ( J z  + 8t2)"*]/2). (17) 

For large J l r ,  p' = 2(p + J). Near the half-filling situation, we start with po = 2J0, 
to get &' = 65.3 after the first RG step. After the second step (see figure l(b)), we obtain 
p" = 2(6J0 + J ' )  = 2(6J0 + 3Jo) = l8Jo = 9~ = bdpo. Such an eigenvalue at a trivial 
fixed point equal to bd is the signal for phase separation [ 141. Although this calculation is 
performed for the king model, its conclusions can be extended to the Heisenberg model 
since the phase separation line is very similar and therefore both models yield the same 
phenomena. Thus we demonstrate here, for the first time, that the critical line separates a 
homogeneousdensity from an inhomogenwus-density phase with a hole-rich and electron- 
rich phase and not a homogeneous antiferromagnetic from a homogeneous paramagnetic 
state. 

The phase separation line is plotted in figure 2, for the Heisenberg case: the curve 
has a negative slope, indicating that the phase-separated state is first unstable to electrons 
appearing in the empty phase, as pointed out by Putikka et ai 191. The phase separation 
line starts near the value of n = 0.89 and J/? = 0. It is important to verify that we find 
a change of phase at n 5 0.8 and J / r  = 0.3. which are values close to the experimental 
ObSeNatiOnS for some HTSC compounds. The critical line finishes at J I  t N 1.9 for n = 0. 
The Ising separation line is very close to the Heisenberg line. 
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Figure 2. The results of our calculations. We include the c w e  of [SI (- -. .) and the clwc of 
[91(-, -). me points are the r e s u l ~  of U]. 

We also display in figure 2 some previous results for the 2D r-J model phase diagram. 
The calculations of Marder et d [8] compare better with our results for low J / t  but are 
closer to the Ising model calculations. This may be a consequence of their semiclassical 
theory and the modification of the Hubbard operators commutation relations. The results 
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of Emery et al 171 agree with our results for n N 0.7 and also display phase separation 
for very low values of J / t .  They have performed an exact numerical diagonalition on 
a 4 x 4 cluster and used the general arguments of [IS] and 1161. Nevertheless, it is not 
straightforward how their results are extended to the infinite square lattice. Also plotted in 
figure 2 are the calculations of Putikka et al [9]. They have performed a high-temperature 
expansion for the Helmholtz free energy and used Pad6 and integral approximants to estimate 
the T = 0 K behaviour. They found that phase separation may occur only for J / t  > 1.2, 
which is significantly different from all the other calculations and is against some theoretical 
arguments [U, 161, which favour phase separation also in the limit of small J / t .  

Our line starts at n = 1.0 and J / t  = 0 and stays near this value of J / t  down to n = 0.9 
where J f t  grows very rapidly. The small values of J / t  for the transition line may be 
attributed to the large fluctuation of the density in a small cell. In other words the value of 
p flows very quickly to p = 0. This also explains how our calculation falls much faster 
than in [71, [8] and [9] in the dilute regime. Furthermore we used states near the half-filling 
to calculate the scaling parameters F ( J )  and b(J,  t ) .  Thus our results are more accurate in 
the regime above p = 0.5, where it is more interesting in order to compare with m c .  

4. Conclusions 

We have performed a real-space QRG analysis of the zero-temperature phase diagram of the 
2D t-J model. This technique has been used successfully for several different quantum 
systems [6], and yields good quantitative results for the low-energy and low-temperature 
properties. 

The method gives the expected zero-temperature recurrence relation for the king and 
Heisenberg coupling constant. We also applied the method to the ZD Hubbard model and 
obtained a Mott transition in better agreement with analytical calculations [ 111 than previous 
RG calculations [IO]. These tests and the partial agreement with the exact diagonalization 
of a 4 x 4 cluster [7] give us confidence in our procedure. 

A critical line is found that separates two distinct regions: one of a gas of holes in an 
antiferromagnetic background and another consisting of a phase in which boles segregate 
in a hole-rich and a pure antiferromagnetic region. We were able to demonstrate the phase 
separation applying some well known renormalization-group results [I41 to the chemical- 
potential recurrence relation near the phase attractor. It ruled out the possibility of some 
magnetic reordering change of phase. We thus conclude that the QRG technique may be 
used to calculate the phase Frontiers and also to characterize the phases. 

The phase separation line agrees extremely well with the known values of the doping 
concentration and spin coupling for lanthanum mc, indicating that the 14 model, despite 
its simplicity, may describe the essential physics of HTSC. 
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